Studying the social determinants of COVID-19 in a data vacuum
Auteurs: Kate Choi, Patrick Denice, Michael Haan, et Anna Zajacova
Aperçu
Résumé (français)
Veuillez noter que les résumés n'apparaissent que dans la langue de la publication et peuvent ne pas avoir de traduction.
Résumé (anglais)
Race-based and other demographic information on COVID-19 patients is not being collected consistently across provinces in Canada. Therefore, whether the burden of COVID-19 is falling disproportionately on the shoulders of particular demographic groups is relatively unknown. In this article, we first provide an overview of the available geographic and demographic data related to COVID-19. We then make creative use of these existing data to fill the vacuum and identify key demographic risk factors for COVID-19 across Canada’s health regions. Drawing on COVID-19 counts and tabular census data, we examine the association between communities? demographic composition and the number of COVID-19 infections. COVID-19 infections are higher in communities with larger shares of Black and low-income residents. Our approach offers a way for researchers and policymakers to use existing data to identify communities nationwide that are vulnerable to the pandemic in the absence of more detailed demographic and more granular geographic data.
Détails
Type | Article de journal |
---|---|
Auteur | Kate Choi, Patrick Denice, Michael Haan, et Anna Zajacova |
Année de pulication | 2021 |
Titre | Studying the social determinants of COVID-19 in a data vacuum |
Volume | 58 |
Nom du Journal | Canadian Review of Sociology |
Numéro | 2 |
Pages | 146-164 |
Langue de publication | Anglais |
- Kate Choi
- Kate Choi, Patrick Denice, Michael Haan, et Anna Zajacova
- Studying the social determinants of COVID-19 in a data vacuum
- Canadian Review of Sociology
- 58
- 2021
- 2
- 146-164